APLIKASI PENGGUNAAN SISTEM DRILLING WITH CASING PADA PEMBORAN EKSPLORASI DENGAN SURFACE CASING 13 3/8” DI LAPANGAN LEPAS PANTAI lanjutan 3

BAB III
TEORI DASAR PEMBORAN DENGAN CASING

Perkembangan teknologi pemboran di dunia telah membuat pembaharuan dalam segi operasi pemboran, salah satunya adalah pemboran dengan Casing. Pemboran dengan casing adalah penyempurnaan dan pengembangan dari Casing While Drilling. Faktor yang membawa operator untuk menggunakan teknologi ini adalah pengurangan waktu dalam kurva pemboran dan pengurangan biaya peralatan yang berdampak akan mengurangi biaya pemboran.
Ada dua metode dasar atau sistem penggunaan dari pemboran dengan casing yaitu :
1. Dengan memasukkan retrievable bottom hole assembly ke dalam casing dan menggunakan motor untuk menggerakan pahat konvensional dan reamer, yang selanjutnya disebut dengan casing drilling.
2. Dengan sistem memutar casing dari permukaan dan menggunakan sistem penyambungan casing internal dan pahat yang dapat dibor kembali dengan peralatan BHA penyemenan di tempat, yang selanjutnya disebut dengan drilling with casing.
Penggunaan kedua metode atau sistem ini tergantung dari kegunaan dan fungsi pemakaian di lapangan, karena pemboran dengan casing ditawarkan sebagai solusi bagi masalah-masalah yang mungkin terjadi pada saat pemboran.

3.1 Konsep Dasar Casing Drilling

Sistem casing drilling adalah sistem atau metode pemboran dengan menggunakan casing sebagai rangkaian pipa pemboran. Dalam hal ini fungsi dari rangkaian pipa pemboran sebagai media untuk melewatkan energi mekanik dan hidrolik kepada pahat bor digantikan oleh casing sehingga dalam pengoperasiannya sistem ini memerlukan peralatan khusus atau beberapa bentuk modifikasi dari peralatan konvensional yang sudah ada.
Pada dasarnya, suatu rangkaian casing drilling terbagi menjadi dua rangkaian utama (lihat gambar 3.1), yaitu :
1. Rangkaian Bottom Hole Assembely (BHA)
Rangkaian BHA casing drilling terdiri dari :
a. Pilot Bit.
b. Underreamer.
c. Motor untuk Dirrectional Control (jika diperlukan).
d. Rangkaian peralatan LWD dan MWD (jika diperlukan).
2. Rangkaian Pipa Casing
Rangkaian pipa casing pada casing drilling telah didesain khusus untuk menahan beban putaran dan tekanan, yang telah dilengkapi pula dengan parameter khusus seperti :
a. Casing Lock Collar
b. Casing Torque Collar
c. Centralizer Khusus
d. Sistem pengunci pada bagian akhir rangkain
Pada aplikasinya rangkaian BHA diturunkan dan dipasang pada bagian akhir casing dengan sutu sistem pengunci khusus, kemudian kedua rangkaian tersebut diturunkan secara bersamaan ke dalam lubang bor dan melakukan pekerjaan pemboran sampai menembus formasi yang dituju. Sedangkan untuk mengoperasikan sistem BHA serta untuk mencabut rangkaian BHA apabila kedalaman yang sudah tercapai atau diperlukan untuk mengganti bit atau motor digunakan powerfull wireline unit.

Gambar 3.1
Rangkaian Downhole Tools Casing Drilling5
Sistem penyemenan yang digunakan pada casing drilling tidak jauh berbeda dengan sistem penyemenan yang digunakan pada operasi pemboran konvensional. Operasi penyemenan pada sistem ini dilakukan dengan menurunkan bottom plug terlebih dahulu sehingga bottom plug terkunci pada landing collar setelah itu barulah dipompakan semen dan didorong dengan menggunakan cementing plug hingga cementing plug terkunci pada bottom plug dengan suatu mekanisme pengunci khusus yang selanjutnya berfungsi untuk menahan tekanan balik dari semen yang dipengaruhui oleh tekanan formasi. Setelah itu barulah dilakukan pemboran untuk fase selanjutnya.

3.2 Tujuan Penggunaan Casing Drilling

Casing drilling terutama didesain untuk suatu kondisi yang mengharuskan operator segera memasang casing setelah membor, sehingga kemungkinan terjadinya masalah formasi dapat dikurangi. Dengan segera menurunkan dan memasang casing pada lubang bor, masalah formasi yang disebabkan oleh runtuhnya formasi shale pada saat memasang casing dapat dicegah. Sistem ini juga dapat mengurangi time spent waiting maupun unscheduled event, yang terutama penting untuk operasi pemboran lepas pantai, di mana arus pasang surut sangat berpengaruh pada saat harus dilakukan pencabutan BHA dan menurunkan casing dengan segera. Selain dapat diperoleh efisiensi biaya operasional dan efisiensi waktu operasi yang berarti, dengan digunakannya metode casing drilling ini faktor keselamatan dapat ditingkatkan pula (dengan mengurangi tenaga kerja yang diperlukan).
3.3 Keuntungan Penggunaan Casing Drilling

Keuntungan yang dapat diperoleh dengan menggunakan sistem casing drilling pada suatu operasi pemboran antara lain adalah sebagai berikut :

3.3.1 Efisiensi Rig

Keuntungan yang dapat diperoleh dari penggunaan rig khusus pada operasi casing drilling adalah :
• Desain rig lebih kecil dan ringan sehingga transportasinya lebih mudah.
• Mengurangi biaya sewa rig.
• Membutuhkan horse power dan perawatan yang lebih sedikit.
• Mengurangi pengulanggan kerja pada drawwork (pada saat triping time).
Dalam mengoperasikannya sistem casing drilling dapat juga digunakan rig konvensional dengan memodifikasi beberapa sistemnya.

3.3.2 Efisiensi Operasional

Dalam segi operasional, keuntungan yang bisa diperoleh dari penggunaan sistem casing drilling adalah :
• Diperlukan konsumsi bahan bakar yang lebih sedikit (dengan digunakannya diameter rangkaian pemboran yang lebih besar pada casing drilling, maka pressure loss pada rangkaian pemboran dapat diminimalkan sehingga tenaga pompa yang diperlukan tidak terlalu besar dan penggunaan bahan bakar dapat dihemat).
• Mengurangi biaya lumpur dan semen.
• Mengurangi waktu tripping (pada saat penggantian BHA).
• Mengurangi masalah deviasi dan dogleg.

3.3.3 Efisiensi Unscheduled event

Untuk meminimalkan unscheduled event pada suatu operasi pemboran keuntungan bisa diperoleh dari penggunaan sistem casing driling adalah :
• Dapat mengatasi timbulnya masalah pada lubang sumur yang disebabkan oleh tekanan swab dan surge.
• Dapat mengaatasi timbulnya masalah pada zona waterflow, shear dan fluid loss pada saat menempatkan casing.
• Dapat mengatasi timbulnya rongga pada lubang bor saat dilakukan reaming back dari rangkaian pipa pemboran.

3.4 Keterbatasan Penggunaan Casing Drilling.

Pada sistem ini terdapat beberapa keterbatasan yang disebabkan oleh penggunaan casing sebagai rangkaian pemboran. Keterbatasan tersebut antara lain adalah :
• Kecepatan putaran casing string tidak terlalu tinggi.
• Keterbatasan beban torsi yang mampu ditahan oleh casing pada saat rangkaian casing diputar.
• Hanya efektif digunakan pada sumur-sumur pengembangan (development well).
• Timbulnya masalah fatigue.
3.5 Konsep Dasar Drilling With Casing (DWC)

Drilling with casing adalah suatu metode atau sistem dengan menggunakan rangkaian casing sebagai rangkaian pipa pemboran. Dalam hal ini rangkaian pipa pemboran sebagai media untuk melewatkan energi mekanik atau hidrolik kepada pahat bor, digantikan oleh casing. Berbeda dengan konsep pemboran casing drilling yang telah diterangkan sebelumnya, Drilling With Casing menggunakan pahat bor khusus yang dinamakan Drillshoe, yang akan diletakkan pada sambungan casing pertama.
Dengan sistem ini, setelah lubang yang dibor dengan casing mencapai kedalaman casing setting depth, “penyemenan ditempat” dapat langsung dilaksanakan tanpa harus diangkat dulu dari lubang (tanpa memerlukan tripping) dan tidak membutuhkan alat lain dalam casing untuk penyemenan. Karena float valve sudah diletakkan pada rangkaian casing selama operasi pemboran. Setelah CSD (casing setting depth) dicapai dan lubang bor dibersihkan dengan mensirkulasikan lumpur di dalam lubang, lalu bottom plug diturunkan sampai duduk pada float collar kemudian pompakan bubur semen dan didorong dengan top plug, maka membrane pada bottom plug akan pecah dan semen akan masuk mengisi annulus sampai posisi top plug berhimpit dengan bottom plug, dan setelah pekerjaan penyemenan selesai Drillshoe dapat langsung dibor dengan pahat PDC konvensional untuk fase pemboran selanjutnya.
Sistem pemboran dengan casing ini tidak membutuhkan modifikasi untuk rig pemboran konvensional. Peralatan yang dibutuhkan untuk operasi ini adalah sistem top drive. Karena tidak ada yang dihilangkan dari casing, tidak ada persyaratan khusus untuk kabel bor atau peralatan penanganan pipa khusus untuk operasi ini. Sampai saat ini, tidak ada operasi DWC yang menggunakan rig penggerak kelly.

3.6 Tujuan Penggunaan Sistem DWC

Teknik pemboran dengan menggunakan casing tidak dapat dipungkiri lagi sebagai teknik yang mampu mengurangi biaya-biaya pembuatan sumur, atau mempermudah pembuatan sumur yang efektif dan praktis selama bisa diaplikasi dilapangan. Pemboran dengan casing memberikan keuntungan dalam penyelesaian pekerjaan dimana tripping time untuk mengangkat peralatan pemboran dan waktu untuk menurunkan casing ke kedalaman setting depth di eliminasi dan pekerjaan dapat langsung dilanjutkan pada tahap penyemenan tanpa masalah.

3.7 Keuntungan Penggunaan Sistem DWC

Keuntungan yang dapat diperoleh dengan penggunaan sistem DWC pada suatu operasi pemboran dapat dibagi menjadi beberapa bagian yaitu efisiensi rig, efisiensi fluida, efisiensi operasional, efisiensi unscheduled event.

3.7.1 Efisiensi Rig

Keuntungan yang dapat diperoleh dari efisiensi rig pada operasi DWC adalah :
• Tidak memerlukan rig khusus atau bisa menggunakan rig konvensional sehingga tidak ada biaya untuk menyewa rig yang khusus.
• Tidak diperlukkan sewa transportasi , perawatan dari drill pipe dan drill collar.
• Membutuhkan horse power dan perawatan yang lebih sedikit.
• Mengurangi pengulangan kerja pada drawwork (pada saat triping time).

3.7.2 Efisiensi Fluida

Keuntungan yang dapat diperoleh dari efisiensi fluida pada operasi DWC adalah :
• Laju alir dapat dikurangi.
• Meningkatkan pengangkatan cutting sehingga pembersihan lubang dapat lebih effisien.

3.7.3 Efisiensi Operasional

Dalam segi operasional, keuntungan yang bisa diperoleh dari penggunaan sistem DWC adalah :
• Diperlukan konsumsi bahan bakar yang lebih sedikit ( dengan digunakannya diameter rangkaian pemboran yang lebih besar pada sistem DWC, maka pressure loss pada rangkaian pemboran dapat diminimalkan sehingga tenaga pompa yang diperlukan tidak terlalu besar, dan dengan adanya hal tersebut maka penggunaan bahan bakar dapat lebih dihemat ).
• Menggurangi waktu tripping ( pada saat tripping dan penggantian BHA )
• Menggurangi masalah deviasi dan dogleg.
• Mengurangi kebutuhan horse power rig, karena kebutuhan rate pompa dan tekanan yang lebih kecil.

3.7.4 Efisiensi Unscheduled event

Dalam meminimalkan unscheduled event pada suatu operasi pemboran keuntungan yang bisa diperoleh dari penggunaan sistem DWC adalah :
• Dapat meminimalkan timbulnya masalah pada lubang sumur yang disebabkan oleh tekanan swab dan surge.

3.8 Keterbatasan Sistem DWC

Pada sistem DWC terdapat beberapa keterbatasan yang disebabkan penggunaan casing sebagai rangkaian pemboran. Keterbatasan-keterbatasan tersebut antara lain adalah :
• Torsi pemboran harus tidak boleh melebihi dari torsi casing.
• Teknologi saat ini dibatasi hanya untuk formasi yang lunak.
• Kedalaman dibatasi oleh kemampuan bit. Penggantian bit tidak memungkinkan karena harus mencabut seluruh rangkaian, sehingga menjadi tidak efisien.

3.9 Sistem DWC dan Alat –Alat Khusus yang Digunakan

Sistem DWC dengan menggunakan casing drill shoe yaitu bagian terbawah dari rangkaian casing sebagai pengganti drill bit. Drill shoe ini didesain dan berfungsi sebagai pahat pemborannya. Pemutaran casing di permukaan menggunakan top drive system. Ada dua cara untuk menghantarkan torsi dan putaran dari top drive ke rangkaian casing pemboran, yaitu dengan casing spears atau water bushing.
Rangkaian pemboran pada sistem ini terbagi menjadi dua rangkaian utama yang pertama rangkaian adalah BHA yang terdiri dari drill shoe, float collar, dan casing. Sedangkan yang kedua adalah peralatan pengangkatan yang harus bisa menahan berat, melakukan permutaran torsi dan mengandung tekanan. Perputaran DWC membutuhkan metode penyambungan dari top drive dengan casing, untuk menggerakan rangkaian casing.
Ada dua alternatif peralatan pengangkatan yang digunakan yaitu : water bushing (casing cross over) dan casing spears.

3.9.1 Drillshoe

Drillshoe adalah alat yang berfungsi sebagai pahat.yang diset di bawah rangkaian pemboran (lihat gambar 3.6). Bagian tengah dari nose alat ini terbentuk dari alumunium alloy, yang dapat dibor dengan segala macam bit / pahat.
Alat ini dibentuk dengan kombinasi dari elemen thermally stable diamond cutting (intan pemotong yang stabil dalam temperatur dan densitas tinggi), tungsten carbide (besi berat tempaan yang terbuat dari bahan sejenis karbid) di depan blade dan badan luarnya mempunya PDC cutter.

Drillshoe sangat agresif dan akan membor secara cepat dengan WOB rendah. Alat pemboran yang agresif dapat membuat torsi yang tinggi untuk berat yang rendah.

Gambar 3.2
Profile Drillshoe6
Tiga jenis model drillshoe yang digunakan dalam pemboran dengan casing yaitu:
1. Drillshoe 1
2. Drillshoe 2
3. Drillshoe 3
Adapun keterangan dari ketiga jenis drillshoe yang digunakan adalah sebagai berikut,

1. Drillshoe 1

Drillshoe 1 (gambar 3.7) mempunyai sistim kerja untuk lapisan atau formasi yang tidak begitu keras dan juga menghemat biaya ketika melakukan pemboran di bandingkan dengan pemboran konvensional, saving cost sewaktu akan mempersiapkan dan melakukan penyemenan (Cement in Place), tanpa adanya lagi Running Casing, drillshoe 1 merupakan produk berjenis inti aluminium yang berpusat di tengah dengan integral cutting blades.
Pisau (blades) terbuat dari bahan-bahan yang keras yang akan menghasilkan ketahanan terhadap adanya abrasi dikarenakan pengaruh pemboran, nozzel yang dapat di bor (Drillable) terdapat di antara blades langsung kepada fluida pemboran yang berfungsi atau berpengaruh kepada pendinginan dan cuttings removal.
Pusat dari drillable core terdapat di dalam badan baja (steel body) yang merupakan profile dari keseluruhan dari blades dan dilanjutkan kepada badan dari shoes yang melingkar hingga kepada diameter luar.
Badan besi yang terdapat di dalam badan (body) berhubungan dengan blades di luar dari diameter luar cutting dan strutkur cutting yang terbuat dari carbide yang akan akan dibor keluar kepada keseluruhan diameter.

Gambar 3.3
Drillshoe 112

Ketahanan terhadap abrasi dilindungi oleh kandungan metal matriks yang mengandung carbide Bricketts.

2. Drillshoe 2
Drillshoe 2 secara umum merupakan konstruksi yang hampir sama dengan Drillshoes 1, di mana (Gbr 3.8) terdapat pembaharuan terhadap cuttingnya yang terdapat di blades, yang mengandung berbagai jenis cutter jenis TSP yang terdapat di sekitar permukaan blades.
Ini akan menghasilkan kemampuan untuk membor formasi yang lebih keras dan interval yang lebih dalam atau kata lain berkemampuan dalam menembus zona yang lebih dalam dalam pemboran dengan casing blades-nya di modifikasi dengan PDC cutter kepada diameter gauge-nya di sekeliling bagian luar dari drillshoe.

Gambar 3.3
Drillshoe 212

2. Drillshoe 3

Drillshoe 3 merupakan produk yang telah dikembangkan dari dua jenis Drillshoe di atas (Gbr. 3.9) di mana telah dikombinasikan dengan keunggulan atau keuntungan dengan struktur cutting dari jenis PDC di mana merupakan standar dari mata bor PDC.
Dengan kemampuan untuk meletakkan atau menempatkan non drillable dari struktur cutting ke dalam lubang sumur, jadi hanya meninggalkan material dari pipa pemboran di daerah pahatnya tanpa merusak dari blades drillshoes.

Gambar 3.5
Drillshoe 312

3.9.2 Water Bushing

Water bushing (cross over) adalah sebuah alat sederhana yang berfungsi untuk menyambungkan top drive ke casing dan dapat di pasang pada torsi rendah. water bushing dibuat agar casing yang paling atas terhubungkan dengan top Drive sewaktu lubang dibuat dan sambungan menambah (lihat gambar 3.10).
Ini adalah suatu operasi yang sangat sederhana, penyambungannya dilakukan langsung dari water bushing ke casing, di mana jenis ulir dari bagian water bushing harus sama dengan ulir casing.

Gambar 3.6
Water Bushing11

3.9.3 Casing Spear

Casing spear sama fungsinya seperti water bushing yaitu alat sederhana untuk menyambungkan top drive ke casing. Seperti dapat dilihat pada gambar 3.11. Casing spear didesain untuk penyambungan cepat pada casing, casing spears dihubungkan dengan casing tidak dengan ulir, tapi melalui bagian dalam casing yang dimasukkan oleh spears yang juga dilengkapi dengan pack-off yang dapat menahan tekanan fluida (seal).

Gambar 3.7
Casing Spear11

menyebabkan ulir casing sama sekali tidak dipergunakan sehingga untuk penyambungan, hanya memerlukan satu koneksi, mengurangi waktu dan berarti akan mempercepat proses penyambungan dengan top drive system.
Stop ring diposisikan dekat dengan puncak spear untuk memastikan pegangan diletakkan pada tempat yang tepat di dalam casing. ¼ putaran ke kiri tanpa pengangkatan khusus akan melepaskan casing sedangkan ¼ putaran ke kanan memasang spear untuk memegang rangkaian casing.

3.10 Prosedur Kerja Umum

Pada Drillshoe 1 (HVOF Tungsten Carbide) dan Drillshoe 2 (Thermally Stable Diamond), kedua-duanya sangatlah agresif dan cepat dalam melakukan pemboran dengan WOB yang rendah. Peralatan pemboran yang agresif dalam menimbulkan torque yang besar untuk berat yang rendah. Sangat direkomendasikan nilai WOB dijaga sampai minimum, sampai beban torque yang didapat dari Drillshoe diketahui. Hal ini dikarenakan jika menggunakan berat WOB yang besar terlalu awal, kemungkinan dapat menyebabkan beban torque yang terlalu besar atau menyebabkan terlalu banyak pemakaian cutting structure.
Prosedur kerja pada pemboran dengan casing melalui beberapa persiapan yaitu 3:
? Persiapan Awal Pada Pemboran

1. Membongkar semua peralatan dan lakukan pemeriksaan peralatan.
2. Memeriksa dan mencatat nomor seri, ukuran dan tipe alat.
3. Memastikan tidak ada kerusakan pada aluminium nose atau cutting structure.
4. Memeriksa bagian nozzle.
5. Memindahkan pelindung ulir (thread protector) dan memeriksa jika ada kerusakan.
6. Memastikan bahwa tidak ada lapisan yang sobek atau serpihan didalam peralatan.

? Menyambung Casing Drilling String

1. Mendirikan Drillshoe box-up diatas keset karet atau alas kayu.
2. Membersihkan dan keringkan sambungan.
3. Memasukan casing joint dan putar dengan beban torque normal.
4. Mengangkat dan menjalankan casing seperti prosedur normal sampai 1 joint dari bagian akhir.
5. Mengangkat rangkaian casing dengan water bushing atau drilling spear.

? Proses Awal Pemboran

1. Memompakan lumpur dengan aliran bertekanan tinggi seperti yang direkomendasikan.
2. Memastikan indikator berat pada kondisi nol dan catat tekanan pompa dan rotary torque.
3. Menjalankan pemboran dengan lambat sampai ke mudline dan dengan hati-hati monitor nilai WOB, torque dan tekanan.
4. Dianjurkan bahwa joint pertama dilakukan pemboran dengan berat minimum sampai rangkaian casing berdiri tegak dan stabil pada lubang.

? Pemboran Awal

1. Selalu melakukan pemompaan dan memuutar rangkaian sebelum sampai ke bawah.
2. Menaikkan berat secara beransur untuk mencapai ROP yang diinginkan.
3. Mengingat, berat WOB yang melampaui batas akan mengurangi umur alat.
4. Memonitor tekanan pompa secara hati-hati.

? Pekerjaan Penyemenan

Float collar yang terpasang bersamaan dengan rangkaian casing dapat membuat operasi penyemenan segera dimulai begitu target total depth dicapai. Operasi penyemenan ini dapat dilakukan seperti prosedur penyemenan normal.
? Drilling Out
Drilling out atau pemboran selanjutnya pada Drillshoe dapat digunakan dengan pahat bor standar atau dengan Drillshoe tipe lainnya.
A. Pemboran selanjutnya dengan pahat bor.
- Aluminum nose sangat baik dibor dengan WOB medium, RPM rendah dan flow rate maksimum.
- Diperkirakan waktu yang dibutuhkan menembus nose Drillshoe adalah 5 – 20 menit.
- Jangan melakukan putaran ketika menarik BHA naik keatas shoe, kecuali benar-benar diperlukan.

B. Pemboran selanjutnya dengan Drillshoe
- Aluminum nose sebaiknya dibor dengan WOB yang sangat rendah, RPM rendah dan flow rate maksimum.
- Diperkirakan waktu yang dibutuhkan menembus nose Drillshoe adalah 10 - 40 menit.
- Jangan melakukan putaran ketika menarik naik keatas shoe, kecuali benar-benar diperlukan.

3.11 Metode Perhitungan yang Digunakan pada DWC

Dalam pemilihan material casing yang tepat pada aplikasi sistem DWC ini, perlu diperhitungkan pula beberapa faktor lain yang dapat mempengaruhi kemampuan pipa casing yang dalam hal ini akan digunakan sebagai rangkaian pipa pemboran. Faktor-faktor yang harus diperhitungkan agar rangkaian pipa casing dapat mampu menahan beban tekanan lain adalah, beban collapse, beban burst serta beban tension.
Metode perhitungan yang digunakan untuk perhitungan ini adalah metode grafis4. Metode ini secara luas digunakan untuk memilih sesuai berat, grade dan menentukan kedalaman casing yang akan diseting. Beban burst, collapse dan tension ditentukan dengan menggunakan grafik tekanan vs kedalaman. ini.

3.11.1 Beban Collapse

Beban collapse adalah beban yang ditimbulkan oleh tekanan fluida yang terdapat di luar rangkaian pipa pemboran (pada annulus).
Metode ini beranggapan bahwa beban collapse ditimbulkan oleh tekanan formasi di sepanjang casing tersebut sebelum penyemenan dilakukan. Metode ini juga beranggapan yang sama dengan metode maksimum load bahwa bahwa beban collapse akan mencapai harga terbesar pada saat sumur mengalami lost circulation dengan sebagian tinggi lumpur tersisa di dalam sumur/casing. Biasanya fluida yang berpengaruh terhadap beban collapse yang ditimbulkan adalah lumpur serta semen pada saat casing dipasang terutama tekanan hidrostatik pada saat semen disirkulasikan sampai ke permukaan.
Pembebanan fluida yang membantu casing menahan collapse (back up) adalah lumpur dengan densitas yang paling ringan yang dipakai saat pemboran kedalaman selanjutnya di bawah kaki casing.
Tahapan-tahapan perhitungan untuk mengetahui besarnya beban collapse yang harus ditanggung oleh pipa adalah sebagai berikut :
1. Menghitung tekanan eksternal dan tekanan Internal pada kolom lumpur di luar dan di dalam casing.
2. Menghitung tekanan collapse (Pc) dari perbedaan tekanan eksternal dan tekanan internal.
3. Pada grafik kedalaman vs tekanan,tarik garis dari Pc = 0 di permukaan dan Pc = maksimum di casing shoe. Garis ini adalah garis tekanan collapse.
Pc di shoe = 0.052 x mud weight (ppg) depth (ft) ………………… 3.1
4. Menarik garis lurus harga collapse dari casing yang tersedia.
5. Persilangan dari garis tekanan collapse dan garis lurus dari casing tertentu akan mendapatkan kedalaman yang sesuai untuk casing tersebut.
3.11.2 Beban Burst

Beban burst adalah beban yang yang disebabkan oleh tekanan hidrostatik lumpur di dalam casing dan tekanan permukaan. Beban burst untuk surface casing ditimbulkan oleh kolom lumpur yang mengisi seluruh panjang casing dan tekanan maksimum tertentu yang dapat dicapai pada bagian atas dan bawah serta pada masing-masing kedalaman antara bagian atas dan dasar rangkaian pipa bor.
Beban burst maksimum dapat ditemui pada saat terjadi kick dan dalam annulus berisi gas dan lumpur. Untuk dapat menghitung beban burst yang harus ditahan oleh pipa, maka berdasarkan pada metode grafis tahapan-tahapan perhitungannya adalah :
1. Menghitung gradient tekanan formasi.
Gf = Gradient rekah (ppg) x 0.052................................................ 3.2
2. Menghitung tekanan eksternal dari tekanan formasi yang diharapkan dari kedalaman selanjutnya.
Pf = Gf (psi/ft) depth (ft).......….................................................... 3.3
3. Menghitung tekanan dalam casing.
Pi = Pf (psi) – (TD (ft) – CSD (ft) ) x Gradien gas (psi/ft)............. 3.4

4. Menghitung tekanan luar casing.
Pe = 0.052 x berat lumpur (ppg) x CSD (ft).................................... 3.5

5. Denga perbedaan tekanan yang diperoleh dari tahap 3 dan tahap 4 akan memberikan tekanan burst di shoe.
Pb di shoe = (Pi (psi) - Pe(psi) ) x SF burst ………………............ 3.6
Sedangkan harga burst di permukaan diberikan menggunakan persamaan :
Pb di permukaan = Pf - TD Gf ................................................. 3.7
di mana :
Pb = Tekanan burst, psi.
Pf = Tekanan formasi, psi.
TD = Total depth, ft.
CSD = Casing setting depth, ft.
Gf = Gradien formasi, psi/ft.
6. Memplot tekanan burst pada grafik dan tarik garis lurus harga burst yang tersedia dari casing.
7. Persilangan dari garis tekanan burst dan garis lurus dari casing tertentu akan mendapatkan kedalaman yang sesuai untuk casing tersebut.

3.11.3 Beban Tension

Beban tension sebagaimana diketahui adalah beban dari berat rangkaian casing yang digantung di dalam sumur. Tetapi dengan adanya lumpur di dalam sumur tersebut akan memberikan gaya apung terhadap casing tersebut sehingga berat casing akan lebih ringan bila dibandingkan dengan berat casing di udara. Akibat lain dari adanya gaya apung ini adalah bahwa pada sebagian rangkaian casing tepatnya pada bagian bawah, casing berada dalam kondisi kompresif dan selebihnya pada keadaan tension.
Pada tiap-tiap bagian dari rangkaian casing beban tensile atau beban kompresif harus dapat diketahui secara pasti. Perhitungan beban tension sangat penting untuk dilakukan pada bagian-bagian terpisah dari rangkaian casing. Prosedur ini perlu dilakukan pada saat masing-masing bagian dari casing diturunkan ke dalam lubang bor serta disemen pada densitas fluida yang berbeda.
Perhitungan beban tension digunakan untuk mengevaluasi kekuatan casing untuk memilih sambungan (coupling) yang sesuai dan untuk menghitung beban biaksial. Untuk menghitung beban tension maksimum yang harus ditahan oleh rangkaian casing pada masing-masing bagian, dapat digunakan langkah - langkah sebagai berikut :
1. Menentukan berat rangkaian casing di udara :
………..……………………………………………… 3.8
Wia = L P
2. Menentukan buoyancy factor :
………………………… 3.9
BF =
3. Menentukan desain beban ( maximum tension )
……...……………………………………………… 3.10
T = W BF
di mana :
W = Berat rangkaian casing, lb.
L = Panjang casing ( kedalaman ), ft.
P = Berat casing / joint, ppf.
BF = Buoyancy factor.
= Berat lumpur pemboran, ppg.
T = Beban tension,lb.

3.11.4 Beban Biaksial

Beban biaxsial adalah gaya-gaya yang bekerja pada casing yang terdapat di dalam sumur terjadi secara kombinasi. Dengan adanya tension maka akan menurunkan collapse resistance dan menaikkan burst resistance.
Jadi dapat disimpulkan dari uraiain di atas, bahwa terdapat empat kondisi dasar yang perlu diperhatikan dalam penggunaan casing.
1. Bila tekanan dalam tekanan luar maka akan terjadi pembebanan burst.
2. Bila terkanan luar tekanan dalam maka akan terjadi pembebanan collapse.
3. Bila Tension minimum Yield Strength maka akan terjadi Deformasi Permanent.
4. Tension akan menurunkan Collapse Resistance.
Parameter yang akan dihitung pada beban biaksial ini adalah :
a. Tes tekanan = 60% Pb ………………………………….... 3.11
b. TST = BW + . .……………............... 3.12
c. SF tension = .......................................... 3.13
d. SF burst = ................................. 3.14
e. SF collapse = ................................................. 3.15
f. BF = 630 x D x Wn ......................................................................... 3.16
g. SL = 3200 Wn………………………………………………….. 3.17
di mana :
Wia = Berat di udara,lbs.
Bf = Bouyancy factor.
Pb = Tekanan burst, psi.
TST = Total kekuatan tensile,lbs.
ID = Inside Diameter, in.
SF = Safety Factor.
BF = Kekuatan bending, lbs.
Wn = Berat persatuan panjang, lbs.
SL = Shock Load/kekuatan drag, lbs.

3.12 Perhitungan Waktu dan Cost/foot Pemboran.

Dalam aplikasi penggunaan DWC pada operasi pemboran lepas pantai di sumur Melati-01, perhitungan waktu operasional perlu dilakukan sebagai salah satu faktor penentu kemungkinan digunakannya sistem ini, karena waktu operasional berhubungan dengan segi keekonomisannya. Apabila waktu yang dicapai dengan menggunakan sistem DWC ini lebih besar atau sama dengan sistem konvensional maka sistem DWC ini tidak layak untuk digunakan, karena secara langsung berhubungan dengan biaya opersional yang akan ditanggung oleh perusahaan.
Pada dasarnya ada dua jenis biaya operasional yang harus dipertimbangkan dalam perhitungan estimasi biaya yang dilakukan yaitu :
1. Biaya untuk peralatan yang akan digunakan, yang meliputi :
• Biaya Daily operation.
• Biaya Pembelian atau penyediaan alat yang diperlukan.
• Biaya operating service
2. Biaya yang dihitung berdasarkan lamanya waktu operasi yang dilakukan.
• Drilling Operation.
• Tripping Operation.
• Others Operation.
3. Biaya yang dihitung berdasarkan jarak kaki (Cost/foot).
Biaya Cost/foot ini dari (referensi Rabia), dapat dihitung dengan persamaan:
……………………………………………….. 3.18
4. Total Waktu Operasi Pemboran.
Total waktu operasi pemboran ini dapat dihitung dengan persamaan :
Total waktu = drilling Time + Cementing Time jam……………….. 3.19

di mana :
C = Cost per foot, $/ft.
B = Biaya pahat, $.
R = Biaya rig per jam, $/jam.
T = Waktu saat pemboran, jam.
t = Waktu saat trip, jam.
F = Panjang lubang yang dibor atau footage, ft.

powered by Blogger | WordPress by Newwpthemes | Converted by BloggerTheme